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Abstract. This paper reports a self-consistent Poisson-Schrodinger scheme including
the cffects of the piezoclectricity, the spontaneous polarization and the charge density
on the electronic states and the quasi-Fermi level energy in wurtzite tyvpe semiconduetor
heterojunction and quantum-laser.

1 INTRODUCTION

In recent vears. several detailed computational methods for analyzing the electronic
properties of strained semiconductor heterojunction have heen reported (See refs. [1,
2]). AIN/GaN. ZnO/MgO and several other wide bandgap wurtzite heterostructnres
are promising candidates for various optoelectronic device applications. An illustrative
study has been reported in ref. [3] within the context of lattice misfit induced strain and
piezoelectric effect on the resonant frequency. Some of the contradictions reported carlier
regarding the order of magnitude of piezoclectricity in wurtzite AIN/GaN heterojunction
(see refs. [1. 4]) have been addressed in the recent analytical development in ref. 3. In
the context of lasing applications. an additional mtegral effect, namely the charge den-
sity effect on the quantum-mechanical states [5]) is not well estimated. Also. it is not
well known how strongly the strain and piezoelectricity influence the Fermi level and the
evolved quantum-mechanical states.
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1.1 Coupled Problems in the Engineering of Quantum Dot Heterostructures

Coupled effects, similar to those discussed above for GaN/AIN and other wide-bandgap
wirtzite quantum wells. become much more complicated when one considers 3D quantum
dot growth and their lasing applications. The main objective behind employing a quan-
fum dot. as in a lasing device, is to first confine the electron motion spatially and then
produce stimulated emission by applving electric field. Although in the physics literature,
a quantum dot is ealled O-dimensional structure, actually the 3D effects due to the CTVs-
talline arrangement of the constituent atoms and the nearfield effects due to the interfaces
become important. For lasing, which is a process of charge pumping, followed by optical
emission. it becomes a competition between the strain energy and the excitonic energy. In

addition. in many wide bandgap heterostructures. wurtzite tvpe crystals are grown aud

they exhibit strong piezoelectric polarization (including spontaneons polarization during
lasing). In literature. the strain effects in quantum dots have been included in an uncou-

pled manner [2. 6] and the semi-coupled Green's function based approach were employed
by Jogai et al. [1]. We consider extension of such idea (but using finite element approach)
bevond 1D type assumption and give a rigorous treatment to the coupled problem. first
for a problem with finite 1D for growth axis (|| direction} and finite 2D normal plane (L
plane) for a multilaver GaN/AIN quantum well structure, and next. a full 3D treatment
to a GaAs/InAs pyramidal quantum dot. Due to intersecting interfaces and corners in

many types of quantum dots (e.g.. pyramidal or hesagonal tvpes, depending on their
constituent crvstallographic properties). the growth process leaves several characteristic

signatures. e.g.. lattice misfit. diffused phases near interfaces and nonlinear strain as a
source of defect formation. Henee, it is understood that. the cffect of interface conditions
and phase inhomogeneity need to be considered in deriving the energy density, Such an
energy density deseription must also account for the spatial distribution of the density of
states in the structure via Maxwell's equations.

2 Material model, lattice misfit and polarization induced strain

We define the material model for the erystalline Bravais lattice as

og=ce—~eE. D=¢E+ee+ Pg,. (1a)

where o, €. D. E and P, are the stress tensor, the strain tensor. the electric dis-
placement. the electric field and the spontaneons polarization, respectively. e is the
stiffness tensor. € is the dielectric tensor and e is the tensor of piezoelectric constants.
The strain tensor is expressed as € = 1[(Vu(x)) + (Vu(x))T] - €%x) + aAT , where
w(x) = {ug uy.u.) denotes displacement of a material point x and £%(x) denotes the
compressive residual strain due to lattice misfit (see ref. (2] for details). e is the tensor of
thermal expansion coefficients and AT denotes the difference between the device temper-
ature and the equilibrium temperature. The electric field is given by E = —Va. where o
is the electric potential,
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For an assumed distribution of donors and electrons, it is possible to find an analytical
solution of the full piezoelectric problem only for simple geometries and thus estimate
the band cdge potential, and subsequently the energy states, accurately, Such analytical
results can be found in refs, (L. 3. 7. Taking note of these developments. optimization the
effect of size (e.g. length of the well relative to the barrier) as a mechanism of refaxing
the strain due to lattice wisfit. electrical polarization ete.. which are important factors to
influence the band structure. require detailod analysis. However, in lasing applications,
where the charge density also affects the eloetric field 15 and the equilibrium strain,
the overall effect die 1o the size of the well region. as well as the shape of electron/hole
confinements for various subbands are not well understood. and it requires a self-consistent
model as discussed next.

3 COUPLED POISSON-SCHRODINGER MODEL

The coupled equations of piezoclectricity has the general form:
Vie=0, V. D=¢eN;—n(x)). (2a)

where ¢ is the (positive} electronic charge, Ny is the donor density. and nix) is the
carrier clectron densitv. In this paper. we neglected the influence of donors and holes
in the structure. Equations (2a) and (2b) are converted into Poisson equation with the
stress @ expressed in terms of the displacement pradient Vag and the electric potential
@. Similarly. the electrie displacement D is also expressed in terms of the displacement
gradient and the electrie potential,

The electron density nix) is found by solving the Schridinger cquation. We choose
to use the effective-mass approximation. so that the o mduction-band envelope functions
and corresponding energies are found by solving the equation:

H(N(R /[ (2m))V. e. o)W = piigtn : (3)

where I7 is the Hamiltonian, The (e. o) dependent terms in /1 are obtained by solving the
Poisson equation (Er. (2a)-(2)) within a loop of iteration. According to the Fermi-Dirac
distribution.

nix) = -_;Z W ) (B By T) . (4)

In order to obtain the converged values of the Fermi lovel energy, we start with £j, =
EL"; = Hy. such that Hy, < H, for the well. that is. the initial value Hy (in the order of
few tneV) lies at the bottom of the relative conduction band edge. With this initial value
assigned to Epy and n{z) = n(2)" = 0. we first solve the Poisson equation (combined form
of Egs. (2a) and (2a) along with Ec - (1)} Next. we solve the eigenvalue problem based
on Eq. (3) and then evaluate n{z) = n(s) 10, Next, the Fermi lovel energy is updated as
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Epy = Eg + AEg;. This process is repeated until an equililvium is reached. that is i
until 8

3.1 Effect of Electron Carrier Distributions in GaN/AIN Quantum Well 2 I ENTRY

Figures 1(a) and (b) show the strain and the electric potential. The strain does not Prowins
change whereas the electric potential increases by approximately 0.4 e\ when nonzero - the ety
Ny is assumed. The calculated ground state conduction band cnergy is found to drop dter the &
by 12,7 meV and the Fermi energy deviates by = 100 meV when compared to deconpled s =
band structure-piezoclectric calewlation (i.c.. one-step calenlation ). .
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