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Numerical Simulation of Phase Transformations
in Shape Memory Alloy Thin Films

Debiprosad Roy Mahapatra and Roderick V.N. Melnik

Mathematical Modelling and Computational Sciences,
Wilfrid Laurier University, Waterloo, ON, N2L3C5, Canada

Abstract. A unified variational framework and finite element simula-
tions of phase transformation dynamics in shape memory alloy thin films
are reported in this paper. The computational model is based on an ap-
proach which combines the lattice based kinetics involving the order
variables and non-equilibrium thermodynamics. Algorithmic and com-
putational issues are discussed. Numerical results on phase nucleation
under mechanical loading are reported.

1 Introduction

Phase transforming solids, in particular metallic alloys with large differences in
lattice constants of their crystollographic variants have interesting properties.
The variants (phases) which exist at low temperature are called martensites
and the parent state which exists at high temperature is called austenite. When
temperature is increased, the martensites are transformed to austenite at certain
critical temperature. Further, when mechanical force is applied at constant tem-
perature, the structure undergoes a different transformation path from austenite
to martensites and recovers the original shape. This is known as shape memory
effect. The associated strain can be quite large (6% − 50%) depending upon
the size of the sample. Shape memory effect has wide range of applications in
mechanical, bio-medical and micro-device engineering. Due to thermomechani-
cally coupled phase transformation which is not diffusive but of first-order type,
and which produces microstructures with sharp interfaces with large rotations
of lattice vectors, the experimental, analytical and computational characteriza-
tion of the material properties and overall structural responses become highly
challenging. There are three important mathematical and computational issues
for reliable numerical simulation of shape-memory alloys, which are (1) an ac-
curate description of the free energy density, its frame-invariance and material
symmetry properties [1, 2], (2) prediction of the microstructures [2, 3] and their
evolutions [4, 5, 6] and (3) prediction of the thermo-mechanical hysteresis at the
macroscopic scale, which is important in the numerical simulation based design
of shape-memory alloy devices [7]. Therefore, a challenging task is to address all
of the above objectives systematically within a unified modeling, analysis and
computational framework. In this paper we report a finite element based numer-
ical simulation of phase transformations in shape memory alloy thin films. The
computational model is based on a Ginzburg-Landau free energy description,
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Numerical Simulation of Phase Transformations 115

detailed analytical studies of which can be found in [8, 9, 10, 11]. Applications of
the Landau theory to the description of first-order martensitic phase transitions
can be found in [12]. Also, numerical simulations of microstructure due to cubic
to tetragonal transformation in thin films based on continuum theory of lattice
have been reported [3], where quadratic polynomial of the strain invariants have
been employed to construct the free energy densities separately for the austen-
ite and the martensites. In the above work, a free-boundary type variational
formulation was employed for quasi-static analysis of microstructure.

In order to perform numerical simulations, we have developed a variational
framework and a finite element code, wherein a general thermo-mechanical
loading can be handled while studying the lattice-based kinetics of the mi-
crostructures. The computational model developed here employs a variational
framework, where the thermodynamic conservation law couples the mechanical
deformation, temperature and the order variables. The order variables describe
the type of phase (parent austenite phase or a martensitic variant) at a material
point. The paper is structured as follows. In Sec. 2, we summarize the Ginzburg-
Landau free energy coupled model, which has been implemented in the varia-
tional framework. The variational framework and the finite element formulation
are discussed in Sec. 3. Computational issues are discussed in Secs. 4 and 5.
Numerical results for cubic to tetragonal phase transformations in Ni-Al thin
films are reported in Sec 6.

2 Ginzburg-Landau Free Energy Model

We denote the order variables ηk ∈ [0, 1], where k = 1, · · · , N indicates the
number of martensitic variants, ηk = 0 ∀k defines the austenite and ηk = 1 , ηj =
0 , k �= j defines the kth martensitic variant at a material point. According to
the point group of crystallographic symmetry, only one type of martensite is
allowed to exist at a material point. Denoting the vector of the order variables
as η = {η1, · · · , ηN}T , the Gibbs free energy density is defined as G(σ, θ, η).
Here σ is the stress tensor, θ is the temperature. The finite strain tensor ε is
decomposed into the elastic part and the transformation-induced part as

ε = εel +
N∑

k=1

εt
kϕ(ηk) , (1)

where ϕ(ηk) is a polynomial in ηk and εt
k , k = 1, · · · , N are the transforma-

tion strain tensors [2] obtained using experiments. The structure of the initially
unknown polynomial ϕ(ηk) is such that it satisfies the following two conditions:

ϕ(0) = 0 , ϕ(1) = 1 . (2)

The frame-invariance property of the free energy density is imposed by the
polynomial structure in ηk such that interchanges between two indices produce
identical structure of G. Material symmetry under proper rotation of the lattice
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vector is preserved due to the decomposition in Eq. (1). The Gibbs free energy
density then takes the following form.

G(η) = −1
2
σ :

[
λ0 +

N∑

k=1

(λk − λ0)ϕ(ηk)

]
: σ − σ :

N∑

k=1

εt
kϕ(ηk)

− σ :

[
εθ0 +

N∑

k=1

(εθ
k − εθ

0)ϕ(ηk)

]
+

N∑

k=1

f(θ, ηk) +
N−1∑

i=1

N∑

j=i+1

Fij(ηi, ηj) , (3)

where λk is the second-order forth-rank compliance tensor for the kth marten-
sitic variant (Mk phase), λ0 is for austenite phase (A phase), εθ

0 = α0(θ − θe),
εθ

k = αk(θ − θe). θe is the temperature at which the stress-free martensite losses
stability. α0 and αk are the thermal expansion tensors for A and Mk phases,
respectively. f(θ, ηk) is the chemical part of the free energy of the Mk phases
and assumed in the form of a polynomial which is to be determined. Fij is an
interaction potential required to preserve the frame-invariance of G with respect
to the point group of symmetry and uniqueness of the multivariant phase trans-
formation at a given material point. The description of the order variables can
now be generalized with three sets of order parameters: 0̄ = {0, ηk = 0, 0} for A
phase, 1̄ = {0, ηk = 1, 0} for Mk phase and η̄k = {0, ηk, 0}, ηk ∈ (0, 1) for diffused
A − Mk interface. The role of the first-order kinetics in the order variables is to
assist in reaching the bottom of the energy well, i.e.,

∂G

∂ηk
= 0 , η = 0̄, 1̄ , (4)

∂2G

∂η2
k

≤ 0 , η = 0̄ (A → Mk), (5)

∂2G

∂η2
k

≤ 0 , η = 1̄ (Mk → A). (6)

The transformation energy associated with A ↔ Mk transformation is

G(σ, θ, 0̄) − G(σ, θ, 1̄) = σ : εt
k − ΔGθ , (7)

where ΔGθ is the jump in the free energy due to phase transformation. With the
help of Eqs. (2)-(7), we determine ϕ(ηk) and f(θ, ηk) (see [10] for the details).
According to Landau theory, a quadratic polynomial in strain components can
be adequate to describe the free energy. Therefore, following Eq. (1), one finds
that for cubic to tetragonal transformation, the interaction potential has the
following form (see [9] for the details)

Fij = ηiηj(1 − ηi − ηj)
[
B

{
(ηi − ηj)2 − ηi − ηj

}
+ Dηiηj

]
+ η2

i η2
j (ηiZij + ηjZji)

(8)
where the material constants B and D are obtained from experiments or nu-
merical estimation. The matrix elements Zij are obtained as functions of the
constants B and D and an energy scale factor in f(θ, ηk).
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2.1 Thermodynamic Conservation

Note that a jump in the free energy ΔGθ has been introduced in Eq. (7). The
consequence of this jump, as well as the jump in the total strain across the A−Mj

interface, is the thermodynamic forcing as a source of dissipation. The forcing
term would eventually be balanced by the kinetic force. Therefore, one has to
establish a link between the evolution of the phases and the non-negativity of
the thermodynamic potential (Helmholtz free energy). This is unlike the notion
in plasticity-based framework (see e.g.[13]), where the non-negativity of the rate
of phase fraction is directly enforced.

For the present problem, the kinetic equation is derived by balancing the
thermodynamic force with the kinetic force as

C
∂ηk

∂t
+

∂G′

∂ηk
= 0 , (9)

where C is a constant and G′ = G + G̃(∇η) describes the modified Gibbs free
energy including the gradient terms to account for the non-local nature of the
interface energy. By rearranging Eq. (9) and expanding the forcing terms, we
get the Ginzburg-Landau equation for phase kinetics, which is given by

∂ηk

∂t
= −

N∑

p=1

Lkp

[
∂G

∂ηp
+ βp : ∇∇ηp

]
+ θk , (10)

where Lkp are positive definite kinetic coefficients, βp are positive definite second
rank tensor. θk is the thermal fluctuation satisfying the dissipation-fluctuation
theorem. Eq. (10) is complemented by the macroscopic energy conservation law

∂

∂t

[
W − θ

∂W
∂θ

]
− ∇ · (σ · u̇ − q) = hθ , (11)

and the momentum balance equation

ρ
∂2u

∂t2
= ∇ · σ + p , (12)

where W is the Helmholtz free energy given by

W = G + cvθ +
1
2
σ :

[
λ0 +

N∑

k=1

(λk − λ0)ϕ(ηk)

]
: σ

+ σ :

[
εθ0 +

N∑

k=1

(εθk − εθ0)ϕ(ηk)

]
, (13)

q is the heat flux, hθ is the heat source and p is body force.
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3 Variational Framework and Finite Element
Discretization

We relate the elastic part of displacements to the elastic strain εel via the linear
strain-displacement relation, i.e. εel = ((∇u)+(∇u)T )/2. With this assumption
of strain and Eq. (1), it is now obvious that the order variables ηk, k = 1, · · · , N ,
are to be treated as internal variables in the variational formulation. We want
to interpolate the fields u(x, y, z, t), θ(x, y, z, t) and ηk(x, y, z, t) over the domain
Ω(x, y, z) ⊂ R2 with Lipschitz continuous boundary ∂Ω, using fixed-order finite
elements with h-refinement. We consider the Lagrangian isoparametric interpo-
lation function N ,

{u1, u2, u3}T = Nuve , θ = N θv
e , η = Nηve , (14)

v = {u1, u2, u3, θ, η1 , · · · , ηn}T . (15)

Here, the superscript e indicates element nodal quantities. Introducing admissi-
ble weights {ūi, θ̄, η̄k} chosen from the linear span of ve, the variational formu-
lation of the problem can be stated as follows

δΠ = δΠPT + δΠθ + δΠu + δW = 0 , t ∈ [0, +∞] (16)

where

δΠPT =
∫

Ω

N∑

k=1

N∑

p=1

δη̄k

[
Lkp

(
∂G

∂ηp
+ βp : ∇∇ηp

)]
dx

∫

Ω

N∑

k=1

δη̄k

[
∂ηk

∂t
− θk

]
dx −

∫

∂Ω

N∑

k=1

N∑

p=1

δη̄kLkp
∂G

∂ηk
ds(x) , (17)

δΠθ =
∫

Ω

δθ̄

[
∂

∂t

(
W − θ

∂W
∂θ

)
− ∇ · (σ · ∂u

∂t
)
]

dx

+
∫

Ω

δθ̄

[
∇ ·

(
−κ∇θ − α′κ∇∂θ

∂t

)]
dx −

∫

∂Ω

δθ̄q⊥ds(x) , (18)

δΠu =
∫

Ω

δūT

[
ρ
∂2u

∂t2
− ∇ · σ

]
dx −

∫

∂Ω

δūT σ⊥ds(x) , (19)

and W is the external work done over the sample. Integrating Eq. (16) by parts,
we obtain the finite element approximation

M
∂2v

∂t2
+ D

∂v

∂t
+ Kv = f , (20)

with initial state and microstructure

v(t) = v(0) ,
∂

∂t
v(t) = 0 . (21)
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4 Deformation, Phase Kinetics and Multiple Scales

The problem of simulating the microstructure in shape memory alloys has been
extensively discussed in the literature [1], primarily under static loadings. Dy-
namic loadings present a major remaining challenge in the field. While simulating
the macroscopic deformation under dynamic loadings, resolving the sharp inter-
faces and the dendritic microstructure with multiscale features are some of the
key computational difficulties that need to be addressed. A smoothed version
of the transformation conditions in Eqs. (4)-(6) leads to the time-dependent
Ginzburg-Landau phase kinetics, where the fast time scale has to be controlled
depending on the global time stepping (in slow time scale) in the finite element
time integration. Note that ηk represents the reordering of the atomic ensemble
within a box (or in other words within a finite element). Choice of the length-
scale for defining this box can be arrived at by applying a finite-difference scheme
to the phase kinetic equation. The chosen time scale for the kinetics dictates the
limit to the coarse graining of ηk. This, in turn, restricts the order of interpola-
tion for a given size of the finite element. Since the elastic part of the strain is
defined in the lattice coordinate for the current phase, special care is necessary
to ensure continuity of elastic strain and hence displacement within that phase.
For example, if linear interpolation is used for displacement and there exists a
number of elements having same phase connected to a finite element node, then
we average out the displacement for that particular node. For higher-order in-
terpolation, this is not necessary, except when additional intermediate nodes are
used in an element for interpolation of ηk.

5 Computational Scheme

We have implemented the finite element model discussed in Sec. 3 in a gen-
eral three-dimensional finite element code. For numerical simulation of cubic to
tetragonal transformation, we deal with three different phases, that is N = 3. We
employ an 8-node, 7 d.o.f/node hexahedral element with tri-linear isoparamet-
ric interpolation and reduced Gauss-quadrature integration for in-plane shear
terms. Since the energy minimization process can take a different and unphysi-
cal path, a special care should be taken in organizing nonlinear iterations. The
implemented algorithm is given below.

(1) Form the matrix M and the linear parts of the matrices D and K.
(2) Time step: ti = t0; Form the nonlinear system. Solve: K(vi)vi+1 = f̄(vi).
(3) Iteration step : j = 1; From (2), vj

i+1 = vi+1. Form Δf̄
j
i+1 = f̄ (vj

i+1)int −
f̄(vi). Solve [14]: Δvj+1

i+1 = −K(vj
i+1)

−1Δf̄ j
i+1.

(4) Update: vj+1
i+1 = vj

i+1 +Δvj+1
i+1 . Check stability conditions Eqs. (5)-(6). If not

consistent, update ηk only and repeat (3).
(5) Update: εj+1

i+1 , σj+1
i+1 . Check convergence. If not converged j ← j + 1, repeat

(3) else go to (6).
(6) Update: v̇i+1 = v̇j+1

i+1 , v̈i+1 = v̈j+1
i+1 . i ← i + 1, repeat (2).
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6 Numerical Simulations

A Ni-Al thin film is considered for numerical analysis in this section as an exam-
ple. The material properties are taken from [9]. 5Hz sinusoidal stress is applied
in the longitudinal direction throughout the left and right edges of the rectangu-
lar film. The stress distribution over the edge has equilateral triangular shape.
The other two parallel edges of the film are kept free. Constant temperature of
300K with cubic phase (austenite) is assumed to be the initial state. Figures 1
and 2, respectively, show the displacements and the nucleated phases near the
stressed left and right edges of the film.
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Fig. 1. (a) Longitudinal displacement u1 and (b) lateral displacement u2 during nucle-
ation of the martensites from the right edge at the first one-fourth of the loading cycle
(t = 25ms)
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Fig. 2. Martensitic variant η1 → 1 (seen as the horizontal strips in the middle) during
nucleation from the left and right edges at the first one-fourth of the tensile loading
cycle (t = 25ms)
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7 Conclusions

A computational model has been developed and the simulations based on this
model capture a qualitative behaviour of the Ni-Al microstructure observed ex-
perimentally (see [15]).
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