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ABSTRACT

A Ginzburg-Landau free energy model of multivariant phase transformation in shape memory alloy has been
developed. This paper is focused on linking the developed microscopic model with the atomistic reordering
process which finally give rise to self-accommodating microstructure. It is analyzed how the kinetics influences
the computation of stress-temperature induced dynamics of phase transformation in microscopic and larger
length-scales without attempting to solve a molecular dynamic problem in a coupled manner. A variational
approach is adopted and phase transformation in Ni-Al thin film is simulated. The simulations capture a
qualitative picture of the onset of microstructure formation.
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1. INTRODUCTION

Shape memory effects in alloys are observed due to the existence of large differences in the variants of the crystal
lattice transformation strain tensors.1 For practical engineering applications of the shape memory effects,
thus the understanding of the self-accommodation of the crystallographic variants in a particular geometry
under thermomechanical constraints are important and various related problems have been studied over the
last three decades with great interests. There are a number of published works which cover the subject in a
comprehensive manner and will not be possible to discuss here. Various related discussions can be found on
the theoretical aspects (see references1–6), on the computational aspects (see references5, 7–12) and and also on
the experimental aspects (see reference13). For micromechanical applications of the shape memory effects, it is
essential to understand the evolution of microstructure. Since the process is highly nonlinear, both in terms of
the transformation path as well as the geometry, variations in the spatio-temporal loading can produce altogether
different microstructures. Related aspects have not been reported much in published literature except few (e.g.
tent formation in thin film14 which has been analyzed only in context of the terminal shape).

Phase transformations in crystalline solids are known to be the results of the atomic reordering. To treat this
phenomenon in theory, two somewhat different approaches have been developed over the years. One is based on
the physical descriptions, such as the atomic reordering, quantum-mechanical interaction and thermodynamic
fluctuation. Since an atomistic simulation with few millions of atoms in a box is too insufficient to study the
transformation dynamics in any reasonable scale for engineering applications, renormalization group theory based
scaling approaches have been considered to study a relative large system, which extends the present computational
capability to the scale of few single crystal domains for shape memory alloys where the deformation of the box
itself is significant and needs to be included in the atomistic simulations.15, 16 A deterministic version of the
phase transformation in crystalline solids as a critical phenomenon is often studied by analyzing the phonon
branches corresponding to the unstable modes of lattice vibration. An application of this technique to study
the stability and hysteresis in shape memory alloys can be found in.12 Again, such technique is suitable mainly
for periodic lattice in single crystals and dealing with general boundary conditions appears difficult. In order
to analyze a shape memory alloy sample in the form of wire or thin film, where the macroscopic scale is in
the order of centimeter of larger, it appears advantageous to employ variational method where one first defines
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an appropriate energy density and then thermodynamic conservation law. In order to develop a variational
method, one requires to describe the non-equilibrium thermodynamics for a particular type of alloys involving
entropy changes due to phase transformation. Within the framework of plasticity, one finds such description
as a phenomenology (e.g. see 2, 17), where a large number of parameters have to be adjusted considering the
dynamics of the phase evolution a priori. On the other hand, there is another thermodynamic approach known as
Ginzburg-Landau theory, which is microscopic in nature and also requires phenomenology, but with systematic
guesses of material parameters. However, for problems in two or more dimensions, here also the number of
unknown material parameters become very large and their experimental determinations are often impractical
and requires molecular dynamic simulation. Thus, one sees that as the complexities in the model increases,
which is indeed expected as one deals with various engineering aspects at the microscale, it becomes increasingly
important to account for the small-scale dynamics. In this paper we discuss a Ginzburg-Landau theory and a
variational method for finite element simulation of the phase transformation dynamics in Ni-Al thin film, where
certain aspects of the atomic reordering process is introduced through the first-order kinetics systematically.
Some of the issues related to scales are discussed. Molecular dynamic simulation need not explicitly be coupled
in this approach, however scopes remain to do so in a multi-scale framework.

There are three important mathematical and computational issues for reliable numerical simulation of shape-
memory alloys, which are (1) an accurate description of the free energy density, its frame-invariance and material
symmetry properties,1, 3 (2) prediction of the microstructures1, 10 and their evolutions5, 18, 19 and (3) prediction
of the thermo-mechanical hysteresis at the macroscopic scale, which is important in the numerical simulation
based design of shape-memory alloy devices.11 A challenging task is thus to meet all of the above objectives
systematically in a unified modeling, analysis and computational framework. The computational model is based
on a Ginzburg-Landau free energy description, detailed analytical studies of which can be found in.6, 20–22 Various
related discussions regarding the application of Landau theory to the first-order martensitic phase transition can
be found in.23 Also, numerical simulations of microstructure due to cubic to tetragonal transformation in
thin films based on continuum theory of lattice have been reported,10 where quadratic polynomials of the
strain invariance have been employed to construct the free energy densities separately for the austenite and the
martensites.

In order to perform numerical simulations, we have developed a variational framework and a finite element
code, where general thermo-mechanical loading can be handled while studying the lattice-based kinetics of the
microstructures. Here, the thermodynamic conservation law couples the mechanical deformation, temperature
and the order variables. The order variables describe the type of phase (parent austenite phase or a martensitic
variant) at a material point. The outline of the paper is the following. In Sec. 3, we summarize the Ginzburg-
Landau free energy model, which has been implemented in the variational framework. The variational framework
and the finite element formulation are discussed in Sec. 4. Computational issues are discussed in Secs. 5.
Numerical results for cubic to tetragonal phase transformation in Ni-Al are reported in Sec 6.

2. ATOMISTIC SCALE INFLUENCE ON MICROSCOPIC MODEL OF PHASE
TRANSFORMATION

Phase transformation in shape memory alloys is diffusion-less and first-order in nature, which means the atoms
do not migrate but electrons and holes do. Atomic reordering takes place within the length of few lattices in one
phase which results in new lattices corresponding to another phase. Let us us consider the molecular dynamic
model15 which accounts for both the atomic coordinate as well as the volume fluctuation of the lattice. The
Hamiltonian of the atomic ensemble can be expressed as

H =
1
V

∫
V

[
1
2

∑
i

miṡ
T
i (hT h)ṡi +

1
2
m′Tr(ḣ

T
ḣ) + Φ(rij , θ) + p|h|

]
dV , (1)

where ri = hsi denotes the position vector of the ith atom in the ensemble with s as the atomic coordinate with
respect to the lattice and the three components of the lattice vector in the columns of h. In Eq. (1), the first
two terms represent the momentum, the third term represents the potential involving the electron density and
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the core-core repulsion, and the last term represents the work done due to pressure. The equations of motion
for the atom i can be expressed as

s̈i = −
∑
j �=i

m−1
i

1
rij

∂Φ(rij , θ)
∂rij

(si − sj) − (hT h)−1

[
∂

∂τ
(hT h)

]
si , (2a)

ḧ = m′−1(σ − p)|h|(h)−1 , (2b)

where σ is the stress tensor, θ is the temperature and τ denotes time in the atomistic scale dynamics. Integrating
Eq. (2a) over the characteristic time τ0 and with the help of Eq. (2b), we obtain the equation for kinetics where
the contribution of the free surfaces and domain walls are not included. It can be stated that the phase transition
occurs within the time interval τ0 and the atomic coordinate relative to the lattice changes from s(0) to s(bτ0),
b > 1. s(0) can be expressed in terms of the lattice constants of the parent phase (austenite phase) and s(bτ0) can
be expressed in terms of the lattice constants of one of the transformed phase (martensite phase). Intermediate
or diffused phase may exist which are unstable and may lead to deffects and dislocations. We now consider a
control volume V̄ = V q , q ≤ 1 and define the vector η(t) , t = bτ , b > 1 of the order variables such that

η̇ =

〈
1

bτ0

∫ t+bτ0

t

ṡidτ

〉

V̄

, (3)

where the Poisson bracket indicates ensemble average of the quantity within the control volume V̄ . We use the
vector η of order variables to introduce phase transition in our free energy model.

3. GINZBURG-LANDAU FREE ENERGY MODEL

We denote the order variables ηk ∈ [0, 1], where k = 1, · · · , N indicates the number of martensitic variants,
ηk = 0 , ∀k defines the austenite and ηk = 1 , ηj = 0 , k �= j defines the kth martensitic variant at a material
point. According to the point group of crystallographic symmetry, only one variant of martensite is allowed to
exist at a material point. Denoting the vector of the order variables as η = {η1, · · · , ηN}T , the Gibbs free energy
density is defined as G(σ, θ, η). Here σ is the stress tensor, θ is the temperature. The finite strain tensor ε is
decomposed into the elastic part and the transformation-induced part as

ε = εel +
N∑

k=1

εt
kϕ(ηk) , (4)

where ϕ(ηk) is a polynomial in ηk and εt
k , k = 1, · · · , N are the transformation strain tensors1 obtained by

experiments. The structure of the initially unknown polynomial ϕ(ηk) is such that it satisfies the following two
conditions.

ϕ(0) = 0 , ϕ(1) = 1 . (5)

The frame-invariance property of the free energy density is imposed by the polynomial structure in ηk such that
interchanges between two indices produce identical structure of the free energy, i.e.,

G(σ, θ, ηi, ηj) = G(σ, θ, ηj , ηi) . (6)

Material symmetry under proper rotation of the lattice vector is preserved due to the decomposition in Eq. (4),
which can be easily proved for isotropic and homogeneous crystals. Gibbs free energy density then takes the
following form.

G(σ, θ, η) = −1
2
σ :

[
λ0 +

N∑
k=1

(λk − λ0)ϕ(ηk)

]
: σ − σ :

N∑
k=1

εt
kϕ(ηk)

−σ :

[
εθ0 +

N∑
k=1

(εθ
k − εθ

0)ϕ(ηk)

]
+

N∑
k=1

f(θ, ηk) +
N−1∑
i=1

N∑
j=i+1

Fij(ηi, ηj) , (7)
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where λk is the second-order forth-rank compliance tensor for the kth martensitic variant (Mk phase), λ0 is
for austenite phase (A phase), εθ

0 = α0(θ − θe), εθ
k = αk(θ − θe). θe is the temperature at which the stress-

free martensite losses stability. α0 and αk are the thermal expansion tensors for A and Mk phases, respectively.
f(θ, ηk) is the chemical part of the free energy of the Mk phases and assumed in the form of a polynomial which is
to be determined. Fij is an interaction potential required to preserve the frame-invariance of G with respect to the
point group of symmetry and uniqueness of the multivariant phase transformation at a given material point. The
description of the order variables can now be generalized with three sets of order parameters: 0̄ = {0, ηk = 0, 0}
for A phase, 1̄ = {0, ηk = 1, 0} for Mk phase and η̄k = {0, ηk, 0}, ηk ∈ (0, 1) for diffused A − Mk interface. The
role of the first-order kinetics in the order variables is to assist in reaching the bottom of the energy well, i.e.,

∂G

∂ηk
= 0 , η = 0̄, 1̄ , (8)

∂2G

∂η2
k

≤ 0 , η = 0̄ (A → Mk) (9)

∂2G

∂η2
k

≤ 0 , η = 1̄ (Mk → A) (10)

The transformation energy associated with A ↔ Mk transformation is

G(σ, θ, 0̄) − G(σ, θ, 1̄) = σ : εt
k − ∆Gθ , (11)

where ∆Gθ is the jump in the free energy due to to phase transformation. With the help of Eqs. (5)-(11), we
determine ϕ(ηk) and f(θ, ηk) (see21 for the details). According to Landau theory, for example, a quadratic poly-
nomial in strain components can be adequate to describe the free energy for cubic to tetragonal transformation.
Therefore, following Eq. (4) one finds that for cubic to tetragonal transformation, the interaction potential can
have the following form (see20 for the details)

Fij = ηiηj(1 − ηi − ηj)
[
B

{
(ηi − ηj)2 − ηi − ηj

}
+ Dηiηj

]
+ η2

i η2
j (ηiZij + ηjZji) (12)

where the material constants B and D are obtained by experiments or numerical estimation. The matrix elements
Zij are obtained as functions of the constants B and D and an energy scale factor in f(θ, ηk).

3.1. Thermodynamic conservation

Note that a jump in the free energy ∆Gθ has been introduced in Eq. (11). The consequence of this jump, as
well as the jump in the total strain across the A − Mj interface, is the thermodynamic forcing as a source of
dissipation. The forcing term would eventually be balanced by the kinetic force. Therefore, one has to establish
a link between the evolution of the phases and the non-negativity of the thermodynamic potential (Helmholtz
free energy). This is unlike the notion in plasticity-based framework (see e.g.2), where the nonnegativity of the
rate of phase fraction is directly enforced.

For the present problem, the kinetic equation is derived by balancing the thermodynamic force with the
kinetic force as

C
∂ηk

∂t
+

∂G′

∂ηk
= 0 , (13)

where C is a constant and G′ = G + G̃(∇η) describes the modified Gibbs free energy including the gradient
terms to account for the non-local nature of the interface energy. By rearranging Eq. (13) and expanding the
forcing terms, we get the Ginzburg-Landau equation for phase kinetics, which is given by

∂ηk

∂t
= −

N∑
p=1

Lkp

[
∂G

∂ηp
+ βp : ∇∇ηp

]
+ θk , (14)
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where Lkp are positive definite kinetic coefficients, βp are positive definite second rank tensor. θk is the thermal
fluctuation satisfying the dissipation-fluctuation theorem. From the time integrated form of Eq. (2a), one finds
that

Lkp ≈ τ0

∑
i�=j

|s0
i − s0

j |
mirij |h| . (15)

Eq. (14) is complemented by the macroscopic conservation law

∂

∂t

[
W − θ

∂W
∂θ

]
− ∇ · (σ · u̇ − q) = hθ , (16)

and the momentum balance equation

ρ
∂2u

∂t2
= ∇ · σ + p , (17)

where W is the Helmholtz free energy given by

W = G + cvθ +
1
2
σ :

[
λ0 +

N∑
k=1

(λk − λ0)ϕ(ηk)

]
: σ + σ :

[
εθ0 +

N∑
k=1

(εθk − εθ0)ϕ(ηk)

]
, (18)

q is the heat flux, hθ is the heat source and p is the body force.

4. VARIATIONAL FRAMEWORK AND FINITE ELEMENT DISCRETIZATION

We relate the elastic part of displacements to the elastic strain εel via the linear strain-displacement relation,
i.e. εel = ((∇u) + (∇u)T )/2. It is now obvious that the order variables ηk, k = 1, · · · , N are to be treated as
internal variables in the variational formulation. We want to interpolate the fields u(x, y, z, t), θ(x, y, z, t) and
ηk(x, y, z, t) over the domain Ω(x, y, z) ⊂ R3 with Lipschitz continuous boundary ∂Ω such that the control volume
V̄ of interest in context of the ensemble averaging in Eq. (6) satisfy the relation diam.(Ω)3 = V̄ . We are interested
in fixed-order finite elements with h-refinement. We consider the Lagrangian isoparametric interpolation function
N ,

{u1 u2 u3}T = Nuve , θ = N θv
e , η = Nηve , (19)

v = {u1 u2 u3 θ η1 , · · · , ηn}T . (20)

Here, the superscript e indicates element nodal quantities. Introducing admissible weights {ūi, θ̄, η̄k} chosen from
the linear span of ve, the variational formulation of the problem can be stated as follows

δΠ = δΠPT + δΠθ + δΠu + δW = 0 , t ∈ [0, +∞] (21)

where

δΠPT =
∫

Ω

N∑
k=1

δη̄k

[
∂ηk

∂t
− θk

]
dx +

∫
Ω

N∑
k=1

N∑
p=1

δη̄k

[
Lkp

(
∂G

∂ηp
+ βp : ∇∇ηp

)]
dx

−
∫

∂Ω

N∑
k=1

N∑
p=1

δη̄kLkp
∂G

∂ηk
ds(x) , (22)

δΠθ =
∫

Ω

δθ̄

[
∂

∂t

(
W − θ

∂W
∂θ

)
− ∇ · (σ · ∂u

∂t
)
]

dx

+
∫

Ω

δθ̄

[
∇ ·

(
−κ∇θ − α′κ∇∂θ

∂t

)]
dx −

∫
∂Ω

δθ̄q⊥ds(x) , (23)

δΠu =
∫

Ω

δūT

[
ρ
∂2u

∂t2
− ∇ · σ

]
dx −

∫
∂Ω

δūT σ⊥ds(x) , (24)
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and W is the external work done over the sample. Integrating Eq. (21) by parts we obtain the finite element
approximation

M
∂2v

∂t2
+ D(v)

∂v

∂t
+ K(v)v = f , (25)

with initial state and microstructure
v(t) = v(0) ,

∂

∂t
v(t) = 0 . (26)

We solve the time discretized version of the nonlinear system of equations in Eq. (25) by Newton iteration along
with the stability conditions in Eqs. (9)-(10).

5. KINETICS AND MULTIPLE SCALES

The problem of simulating the microstructure in shape memory alloys is well discussed in literature. While
simulating the macrosopic deformation under dynamic loading, resolving the sharp interfaces and the dendritic
microstructure with multiscale features are some of the computational difficulties that need to addressed. The
approach presented in this paper, which accounts for the atomic reordering in its ensemble average form is one
way to resolve the fine-scale dynamics and obtain the sharp interfaces at a microscopic scale. At the microscopic
scale, a smoothed version of the transformation conditions in Eqs. (8)-(10) leads to the time-dependent Ginzburg-
Landau phase kinetics, where the fast time scale has to be controlled depending on the global time stepping
(in slow time scale) in the finite element time integration. Note that ηk represents the reordering of the atomic
ensemble in a box. Choice of the length-scale for defining this box can be arrived at by applying a finite-
difference scheme to the phase kinetic equation. Thus, it becomes eventually clear that the chosen time scale for
the kinetics dictates the limit to the coarse graining of ηk. This in turn restricts the order of interpolation for
a given size of the finite element. Since the elastic part of the strain is defined in the lattice coordinate for the
current phase, special care is necessary to ensure continuity of elastic strain and hence displacement within that
phase. For example, if linear interpolation is used for displacement and there exist a number of elements having
same phase connected to a finite element node, then we average out the displacement for that particular node.
For higher-order interpolation, this is not necessary, except when additional intermediate nodes are used in an
element for interpolation of ηk.

6. NUMERICAL SIMULATIONS

For numerical simulation, we consider an effectively two-dimensional domain of rectangular shape. Ni-Al which
undergoes cubic to tetragonal transformation is considered. There are three tetragonal martensitic variants in
this case and N = 3. The transformation strain tensors for these three variants are, respectively,

εt
1 =

⎛
⎝ γ 0 0

0 α 0
0 0 α

⎞
⎠ , εt

2 =

⎛
⎝ α 0 0

0 γ 0
0 0 α

⎞
⎠ , εt

3 =

⎛
⎝ α 0 0

0 α 0
0 0 γ

⎞
⎠ , (27)

where the transformation stretches are given by

α =
a

a0
, γ =

c

a0
, (28)

with a0 as the lattice constant for the high temperature austenite phase and a, c are the lattice constants for
the low temperature martensite phases. By solving a differential algebraic problem, the free energy is obtained
with the following polynomial structure in ηk.

φ(ηk) = 3η2
k − 2η3

k . (29)

The chemical part of the free energy then takes the following form

f(θ, ηk) =
(

∆Gθ +
G0

12

)
φ(ηk) + G0

(
1
4
η4

k − 1
3
η3

k

)
, (30)

Proc. of SPIE Vol. 6170  61700Y-6



x

y

0 0.002 0.004 0.006 0.008 0.01
0

0.002

0.004

0.006

0.008

0.01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

y

0 0.002 0.004 0.006 0.008 0.01
0

0.002

0.004

0.006

0.008

0.01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

Figure 1. Contours of the martensitic variants (a) η1 and (b) η2 during nucleation from the right edge at the first
one-fourth of the loading cycle (t = 25ms).

where
∆Gθ ≈ (−∆se + ∆c)(θ − θe) , (31)

G0 = A0∆se(θe − θc) , A0 ≤ −12
(

∆c

−∆se
+ 1

)
, (32)

where ∆Gθ(θe) = 0, θe is the equilibrium temperature, θc > θe is the critical temperature for transformation
under the applied thermo-mechanical loading, ∆c is jump in the specific heat capacity during transformation,
−∆se > 0 is the jump in the specific entropy at equilibrium temperature. The value of the constant A0 is
to be estimated from experimental hysteresis curve and it is likely to depend on the loading rates and various
additional inelastic effects which are inherent in a single crystal and more significantly in polycrystal sample. For
the following numerical simulations, the material properties are taken from reference.20 The film is subjected
to 5Hz sinusoidal stress applied in longitudinal direction throughout one of its edge. The opposite edge is fully
restrained. The stress distribution over the edge has triangular shape. The other two parallel edges of the
film are kept free. Constant temperature of 300K with cubic phase (austenite) is assumed to be the initial
state. Fig. 1(a) and (b) respectively shows the nucleated tetragonal phases η1 and η2 near the stressed right
edge of the film. The results shown here provides a qualitative picture of the phase transformation and onset
of microstructure formation. Further studies with refined finite element meshes are required to capture various
small-scale features in the dynamics. From Fig. 2 it can be seen that the transformation front (sharp peaks in
the strain) moves toward the right edge first and then moves backward as the edge is unloaded. The snap at
t = 25ms in Fig. 1(a) indicates η1 → 1 near the fully restrained left edge, and η2 → 1 near the free corners near
the y-parallel edges.

7. CONCLUSIONS

An approach to couple the atomistic scale dynamics with the microscopic kinetics based model of phase transfor-
mation in shape memory alloys is reported in this paper. A Ginzburg-Landau free energy description is employed
in a variational framework to simulate cubic to tetragonal phase transformation in thin film under mechanical
loading. Several issues related to characterization of multivariant phase transformation under dynamic loading
remain open. However, the computational model reported here is one step forward to combine numerical simula-
tion with experiments to characterize various properties of multivariant phase transformation. The results shown
here provides a qualitative picture of the phase transformation and onset of microstructure formation. Further
studies with refined finite element meshes are required to capture various small-scale features in the dynamics.

Proc. of SPIE Vol. 6170  61700Y-7



0
0.002

0.004
0.006

0.008
0.01

0

0.025

0.05

0.075

0.1

−0.2

−0.1

0

0.1

0.2

x
t

ε xx

Figure 2. Time histrory of longitudinal strain εxx along the line y = 0.

REFERENCES
1. K. Bhattacharya, Microstructure of Martensite, Oxford University Press, NY, 2003.
2. J. Boyd and D. Lagoudas, “A thermodynamical constitutive constitutive model for shape memory materials.

part i. the monolithic shape memory alloy,” Int. J. Plasticity 12(6), pp. 805–842, 1996.
3. J. Ball and C. Cartensen, “Compatibility conditions for microstructures and the austenite-martensite tran-

sition,” Material Science and Engineering A 273, pp. 231–236, 1999.
4. L. B. M. Brocca and Z. Bazant, “Three-dimensional constitutive shape memory alloys based on microplane

model,” J. Mech. Phys. Solids 50, pp. 1051–1077, 2002.
5. A. K. A. Artemev, Y. Wang, “Three-dimensional phase field model and simulation of martensitic transfor-

mation in multilayer systems under applied stresses,” Acta Mater. 48, pp. 2503–2518, 2000.
6. V. Levitas and D. Preston, “Three-dimensional landau theory for multivariant stress-induced martensitic

phase transformations. i. austenite ↔ martensite,” Phys. Rev. B 66, p. 134206, 2002.
7. C. Charach, “On thermodynamically consistent schemes for phase field equations,” Open Sys. & Information

Dyn. 5, pp. 99–123, 1998.
8. P. Krejci and J. Sprekels, “Phase-field models with hysteresis,” J. Math. Anal. Appl. 252, pp. 198–219,

2000.
9. C. Carstensen, “Ten remarks on nonconvex minimization for phase transition simulations,” Comput. Meth-

ods. Appl. Mech. Engng. 194, pp. 169–193, 2005.
10. P. Belik and M. Luskin, “Computational modeling of softening in a structural phase transformation,”

Multiscale Model. Simul. 3(4), pp. 764–781, 2005.
11. F. Auricchio and L. Petrini, “A three-dimensional model describing stress-temperature induced solid phase

transformations: solution algorithm and boundary value problems,” Int. J. Numer. Meth. Engng. 61,
pp. 807–836, 2004.

12. J. S. R.S. Elliott and N. Triantafyllidis, “Stability of thermally-induced martensitic transformations in
bi-atomic crystals,” J. Mech. Phys. Solids 50, pp. 2463–2493, 2002.

13. D. S. P. Boullay and J. Ball, “nano-structures at martensite macrotwin interfaces in ni65al35,” Acta
Mater 51, pp. 1421–1436, 2003.

14. P. Belik and M. Luskin, “A computational model for the indentation and phase transformation of a marten-
sitic thin film,” J. Mech. Phys. Solids 50, pp. 1789–1815, 2002.

Proc. of SPIE Vol. 6170  61700Y-8



15. R. M. P. Entel and K. Kadau, “Molecular dynamic simulations of martensitic transitions,” Phil. Mag.
B 80(2), pp. 183–194, 2000.

16. K. S. P. Mohn and P. Blaha, “The fcc-bcc structural transition: a mean field model for finite temperature
effects,” J. Phys.: Condens. Matter 8, pp. 817–827, 1996.

17. L. Anand and M. Gurtin, “Thermal effects in the superelasticity of crystalline shape-memory materials,” J.
Mech. Phys. Solids 51, pp. 1015–1058, 2003.

18. C. C. R. Abeyaratne and R. James, “Kinetics of materials with wiggly energies: The evolution of twinning
microstructure in a cu-al-ni shape memory alloys,” Phil. Mag. 73A, pp. 457–496, 1996.

19. M. K. T. Ichitsubo, K. Tanaka and Y. Yamazaki, “Kinetics of cubic to tetragonal transformation under
external field by the time-dependent ginzburg-landau approach,” Phy. Rev. B 62, p. 5435, 2000.

20. D. P. V.I. Levitas and D. Lee, “Three-dimensional landau theory for multivariant stress-induced martensitic
phase transformations. iii. alternative potentials, critical nuclei, kink solutions, and dislocation theory,”
Phys. Rev. B 68, p. 134201, 2003.

21. D. Mahapatra and R. Melnik, “A dynamic model for phase transformations in 3d samples of shape memory
alloys,” Lecture Notes in Computer Science, Springer-Verlag 3516, pp. 25–32, 2005.

22. D. R. Mahapatra and R. Melnik, “Finite element approach to modelling evolution of 3d shape memory
materials,” Mathematics and Computers in Simulations (submitted), Sep 2005.

23. F. Falk and P. Kanopka, “Three-dimensional landau theory describing the martensitic phase transformation
of shape-memory alloys,” J. Phys.: Condens. Matter 2, pp. 61–77, 1990.

Proc. of SPIE Vol. 6170  61700Y-9



Volume 6168: Smart Structures and Materials 2006: Electroactive Polymer
Actuators and Devices (EAPAD)
PLENARY SESSION

EAP AS EMERGING ACTUATORS AND BIOMIMETIC TECHNOLOGIES

ELECTRONIC EAP I

ELECTRONIC EAP II

NEW AND OTHER EAP INCLUDING PAPER, PROTEIN, ETC. I

NEW AND OTHER EAP INCLUDING PAPER, PROTEIN, ETC. II

IONIC EAP: CONDUCTIVE/CONJUGATED POLYMER AND NANOTUBES

IPMC AS EAP I

IPMC AS EAP II

APPLICATIONS OF EAP: ROBOTICS, MEDICAL, ETC.

MODELING IPMC AND OTHER IONIC EAP

TRANSDUCING EFFECTS IN EAP

TRANSDUCING EAP

APPLICATIONS OF EAP

POSTER SESSION

Volume 6169: Smart Structures and Materials 2006: Damping and
Isolation
ACTIVE CONTROL

SHUNTED PIEZOS

ENERGY HARVESTING

MAGNETORHEOLOGICAL FLUIDS

PASSIVE DAMPING

VIBRATION ISOLATION

DAMPING WITH NANOTUBES AND NANOPARTICLES

ADAPTIVE AND TUNABLE DAMPING

POSTER SESSION

Volume 6170: Smart Structures and Materials 2006: Active Materials:
Behavior and Mechanics
FERROELECTRICS I

FERROELECTRICS II



FERROELECTRICS III

MAGNETOSTRICTIVES I

MAGNETOSTRICTIVES II

SMA/FMSM I

SMA/FMSM II

SMA/FMSM III

MULTIFUNCTIONAL COMPOSITES II

MULTIFUNCTIONAL COMPOSITES III

MULTIFUNCTIONAL POLYMERS

POSTER SESSION

Volume 6171: Smart Structures and Materials 2006: Industrial and
Commercial Applications of Smart Structures Technologies
POWER GENERATION AND TRANSMISSION

PIEZOELECTRIC DEVICES (DRILLS, PUMPS, ETC.)

QUALITY AND PROCESS CONTROL

MAGNETO RHEOLOGICAL FLUIDS

SMART STRUCTURES AND MATERIALS, AND NOISE REDUCTION

Volume 6172: Smart Structures and Materials 2006: Smart Electronics,
MEMS, BioMEMS, and Nanotechnology
SIMULATION AND MODELING

NOVEL MATERIALS AND INTEGRATION TECHNIQUES I

NOVEL MATERIALS AND INTEGRATION TECHNIQUES II

NANOSTRUCTURES

RF MEMS AND WIRELESS COMMUNICATION DEVICES

INTEGRATED NANO- AND MICRO-STRUCTURES I

INTEGRATED NANO- AND MICRO-STRUCTURES II

PACKAGING

INTEGRATED NANO- AND MICRO-STRUCTURES III

PACKAGING AND APPLICATIONS OF MEMS TO SMART SYSTEMS

APPLICATIONS



Measurement of magnetic field dependent Youngôs modulus of iron-gallium alloy in flexural mode
[6170-24]
S. Datta, A. Flatau
Machining of iron-gallium for microactuator [6170-25]
T. Ueno, E. Summers, T. Higuchi
Performance and applications of novel magnetic actuator using composite of Terfenol-D and PZT
[6170-26]
T. Ueno, T. Higuchi
Enhanced GMI effect in Fe73.5-xMnxSi13.5B9Nb3Cu1 (x=1,3,5) nanocomposites due to Mn substitution for Fe
[6170-27]
M. Phan, H. Peng, S. Yu, N. Tho, N. Chau
Effect of the processing conditions on the microstructure of urethane magnetorheological elastomers
[6170-28]
A. Boczkowska, S. Awietjan, K. Babski, R. Wroblewski, M. Leonowicz
A particle pair model for magnetorheological fluids [6170-29]
C. Ciocanel, G. Lipscomb, N. Naganathan
Particle mixtures in magnetorheological elastomers (MREs) [6170-30]
P. von Lockette, J. Kadlowec, J. Koo

SMA/FMSM I

A time-discretization scheme for coupled thermomechanical evolutions of shape memory alloys [6170-31]
M. Peigney
Shape memory alloy micro-actuator performance prediction using a hybrid constitutive model [6170-32]
F. Wong, O. Boissonneault
Modeling and testing of shape memory alloy chiral honeycomb structures [6170-33]
F. Scarpa, M. Hassan, M. Ruzzene
Is it necessary to model shape memory alloys within the scope of large strains? [6170-34]
D. Christ, S. Reese
Modeling the essential atomistic influence in the phase transformation dynamics of shape memory
materials [6170-35]
D. Mahapatra, R. Melnik
Experimental test for numerical simulation of SMA characteristics and its simulation [6170-36]
S. Kim, H. Choi, M. Yoon, M. Cho
Properties of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in tension and compression [6170-37]
R. Noebe, S. Padula II, G. Bigelow, O. Rios, A. Garg, B. Lerch
A comparison of the DSC measurements of shape memory alloys and the materialôs thermal
characteristics in a large scale actuator [6170-38]
J. Mabe, C. Yu, E. Rosenzweig

SMA/FMSM II

Thermomechanical characterization of high temperature SMA actuators [6170-39]
P. Kumar, D. Lagoudas, K. Zanca, M. Lagoudas
Processing of porous NiTi by spark plasma sintering method [6170-40]
Y. Zhao, M. Taya
Model for the magnetomechanical behavior of NiMnGa driven with collinear field and stress [6170-43]
X. Wang, M. Dapino




	EP-51-title.pdf
	EP-51-main.PDF
	SPIE Proceedings
	MAIN MENU
	Conferences
	Search
	Close


	EP-50-51-contents.pdf
	EP-51-conents1.pdf
	EP-50-51-CD.pdf

