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Abstract— Novel applications in optoelectronics re-
quire the development of semiconductor structures with
fast photo-response. Transport processes in such de-
vices are dependent on quite complex, essentially non-
linear phenomena. In this paper we derive a model
for the description of fast transient photo-response phe-
nomena in GaAs-based transistors, and develop an un-
conditionally monotone conservative and absolutely sta-
Numerical re-
sults are presented for GaAs vertical field-effect photo-
transistor structure.

ble numerical scheme for its solution.

A major emphasis is given to
photo-charge response in the depletion region of the
structure.

I. INTRODUCTION

Photodevices with fast response are of a fundamental im-
portance to optoelectronics and semiconductor industries.
With a growing area of applications of such devices and
a wider use of devices based on semi-insulating and relax-
ation semiconductor materials [11], a better understanding
of carrier transport processes and subsequent optimisation
of such devices represent an important task in theory and
practice of semiconductor devices.

It is well known that many electro-optical properties of
such devices (e.g., the resistance of electron gas) are very
sensitive to optical illumination. In particular, illumina-
tion may reduce the number of electrons trapped on the
“scattering centers” leading to enhancing electron gas mo-
bility. With the development of new devices the role of
such scattering centers can even be played by self-assembled
quantum dots, if those are placed close enough to the elec-
tronic channel of a modulation doped field effect transistor
(MODFET, e.g., [10]). Various ideas along this direction
have been already studied in the literature and the develop-
ment of novel applications of semiconductor structures with
anarrow-gap “n” layer placed between two wide-gap barrier
“N” layers is under way (e.g., [8] and references therein). In
all these cases, studying transport of photoexited electrons
in these devices and the response of the photoconductive
structure to fast optical pulses are of utmost importance.
In addition, for a range of existing devices, such as HEBT
(hetero-structure-emmiter bipolar transistors) and VFEPT
(vertical field-effect phototransistors), the illumination ef-
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fect of semiconductor layers has many important applica-
tions [1, 2].

In this paper we have chosen a VFEPT structure as a
case study example. The paper is organised as follows.
In Section 2 we derive a drift-diffusion type model to de-
scribe the transient photo-response phenomena in GaAs-
based VFEPTs. We are interested in describing fast pro-
cesses that take place in the depletion region of the struc-
ture. In this case we show that a general model based on a
system of five nonlinear partial differential equations can be
simplified. In Section 3 we construct a numerical approx-
imation for the system on a non-uniform grid and show,
by using a consequence of the maximum principle, that the
derived scheme is unconditionally monotone. This allows
us to apply the scheme to the solution of convection dom-
inated transport problems where the electrostatic field be-
comes large. In Section 4 we analyse the developed scheme
numerically. Section 5 is devoted to computational results
obtained with the developed scheme. Theoretical estimates
on photo-response times to achieve steady state solutions
are confirmed by numerical results obtained for different
boundary conditions. Conclusions and future directions of
the presented work are discussed in Section 6.

II. GOVERNING EQUATIONS

In what follows we are interested in the analysis of trans-
port processes in semiconductor structures illuminated by
the monochrome light. It is assumed that the structure is in
the dynamic equilibrium in terms of concentration of con-
ductive electrons, denoted further by n., and concentration
of holes, denoted further by p.. The photo-generated charge
concentration are denoted further by n. and p. for elec-
trons and holes, respectively. Then, electron-hole plasma
of the semiconductor can be described by a coupled sys-
tem of nonlinear equations containing continuity equations
for each type of the carriers mentioned above and supple-
mented by the Poisson equation

on, aJe
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where densities of electron and hole currents (or carrier den-
sity fluxes) are defined by

0
5= —pina ol + 2 (uEnaTR), (@)
9y

6
T = —kgpage = 5 (paTS).  (9)
In system (1)—(5) we use sub- or super-script e to denote
both conductive and photo-generated carriers. In the con-
text of the notation made this means that a = ¢ for con-
ductive carriers and a = e for photogenerated carriers. Sys-
tem (1)—(5) is given in normalised form, assuming DeMari’s
normalisation constants (e.g., [5] and references therein).
Other notations used in (1)—(5) are standard. In particular,
recall that R* and G denote recombination and generation
terms, respectively (note also that G¢ = 0), ¢ is the elec-

. . Oy . .
trostatic potential (so that _a_tp is the electrostatic field),

w and T (with corresponding sub/super-scripts) denote
charge mobilities and temperatures, respectively, k is the
dielectric constant of semiconductor material, and N and
N, are given concentrations of donor and acceptor impuri-
ties of the given structure. We consider a one-dimensional
model and all experiments reported in Section 5 were ob-
tained for a cross section of a VFEPT structure presented
schematically in Fig. 1. Model (1)—(5) is considered in the

Fig. 1. Schematic representation of the structure under
consideration

space-time region T' = {(z,¢),0 < z < L,0 <t < T}.
Boundary conditions for concentrations are assumed in the
following general form

d
nana(f,t) e ana(z:,t) =a, =0, z=1L, (6)
incorporating Neumann, Dirichlet, and Robin boundary
conditions by choosing appropriate coefficients 7 and o,
while for the potential, ¢, we assume Dirichlet boundary
conditions. Initial conditions for concentrations and poten-

tial were taken in the following form:

= pg (x), (z,0) =

By the (photo)response time of the device we understand
the time needed to reach a steady-state photocurrent, and
here we are interested in fast processes related to photore-
sponse phenomena. For example, such fast processes are in

na(2,0) = ng(z), pa(z,0) wo(x). (7)

the heart of phenomena in the depletion region of such de-
vices as VFEPT. In this case, system (1)—(5) can be simpli-
fied by separating charge transport processes into fast and
slow. Firstly, we re-write system (1)—(5) in an equivalent
form, taking the sum and the difference of carrier concen-
trations as our new variables. In particular, consider the
sum of equations (1) and (2) to get

ON, &
— — —4F* = -2(R* - G9), 8
ot oz ( ) (®)
where Ny = ng + po and 6F* = J¥ — J3. It is easy to
obtain that the flux difference dF'® is
o, \Op 0
§F% = —(pgna = pypa) 5 - = 7= (naTr'+
(2 (23 a @xmpo o
p‘prTp ) + 8_:5{(.unTn I lu'pr ) Na} (9)
In a similar way, from equations (1) and (2) we can also get
ng 0 _,
LA - . 10
ot axF % )

where dno, = nqa — pa is the difference of charge con-
centrations, and F* = J5 + J is the sum of carrier fluxes:

a s 0D
F® = ~(uma + i3pa) g + H3TE 5 =

"‘T"‘a— = Ba—( T e =

7, a
= (3 T) pa + ~bna. (1)

Having found Ny and dng, the actual con('entrauons can be

(65T + us Ty

easily reconstructed by using relations ng = -(N + 0ng)

and p, = %( « — 0ng). In its generality, estimation of re-
combination at high excess charge concentrations is a dif-
ficult problem which can be addressed with transient pho-
toconductivity measurements obtained as a function of the
excitation density [4]. However, it is straightforward to
notice that equations (10), (11) do not contain generation-
recombination terms. Moreover, a simple analysis of fluxes
(9) and (11) reveals that the drift contribution to (11)
is much larger compared to the drift contribution to (9).
Hence, in sufficiently high electric fields with high mobili-
ties of carriers, it is equations (10), (11) that are responsible
for fast processes. This equations will be in the main fo-
cus of our further consideration. Two remarks are left to
conclude this section. Firstly, we note that in the present
study we do not consider highly doped semiconductors and
hence such effects as band gap narrowing are outside of the
scope of the present paper. Secondly, to proceed with the
solution of (10), (11) we still need an approximation to the
spatio-temporal distribution of N,. We assume that this
distribution is practically unaffected by diffusion and re-
combination processes during the fast charge transfer stage
in which we are interested in. In this case it is reasonable
to assume that

Ny = NS+ bng, (12)
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where N? stands for the initial state value of this concen-
tration.

ITI. CONSTRUCTING UNCONDITIONALLY MONOTONE
NUMERICAL APPROXIMATIONS

The description of transient charge transport processes in
semiconductor structures requires the development of nu-
merical approximations that can be applied to both dif-
fusion dominated cases and convection (drift) dominated
cases. Due to a nonlinear character of these processes,
monotone schemes without restrictions on step discretisa-
tions, known as unconditionally monotone schemes, would
be ideally suitable for this task.

We introduce in the region T, defined before, a nonuni-
form grid wr4 = wr Xwp, where w, = {n41 = (L1 —4),l =
0,... Mi—1)}, wp = {hix1 = (Ti+1—%:i),e =0,..., Mz —1)}.
The first step is standard and is carried out according to
the integro-interpolational approach [9, 6]

@Gna)it! = (Bna)t  (Figrje = (F)iEh
Ti+1 h:‘

=0, (13)

where 1 <i< M, —-1,0<1< M; -1, (F“")i_|_1/2 is the
averaged grid fluxes, and h} = % (hi+1 + hi).

In order to obtain the averaged values of the grid fluxes
(F*)is1 /2> we introduce the exponential substitution for
dnge according to the following rule:

ong = QY (z,t) exp (IT (z0,2)) , (14)
where
zy
I¥ (zy,25) = fdzw"(:n), (15)
zy
and
1
w*(z) =
(=) Ong (U3T2 + ueTe)
Oy Opa Ona
@ @ YY L aqpatFa aqa
((nu‘nn&+uppa) oz lunTn ox +-“"pr Ox
9 ' J—
_nagp,zT,f‘ + Pa E‘“’pr) , (16)

where xg is an arbitrary real number, not affecting the final
form of the averaged flux representations, and 0 < z, <
zy < L. As aresult of applying a procedure similar to that
described in [5], we arrive to the following representation of

the grid flux (F“)‘.ﬂﬂ:

(F*)ip1/2 = (BT +”$T§‘)i+1/2 (BR)it1/2

(6na)i41 — %P (82)i1/2) (Oma);
hig1 (exp ((-Bg)i+1/2) = 1)

; (17)

where
1

#%T;'Lx + ugTE)i+1/2 (5n0)i+1/2

(ﬁg)i+l/2 = (

((uﬁna +1yPa);yyn (Pirr — 0i) =
AT )ivr2 ((Pa)igr — (Pa);) +
(15T5) 1412 (Ra)igr — (na)y) =
(Mo)iprse (AT ips — (WRTR);) +

Giprye ((B5T) i — W5T5))) - (8)
Each value “a” at x;,1/> (that is (a);;/,) in (18) is an
approximation defined as (), /o = 1 (@)1 + (a);)-

After substituting of (F'*),, , , and (F*),_, , in the bal-
ance equation (13) we obtain the following numerical ap-
proximation for equation (10)

1
(A (82 dnt") = 7z A" (Bna)iTy +
1§
- . I+1 (6n )i
L Gna)ith - 0/ et = -, g
where
fa _ i fe f“ —1—
“e B (Aiﬂ ’ Bt_l) * Ti41’ (20)

A{a = (!‘ﬂTr? £ IU’PT:),'_UQ (ﬂg)i—lﬂ

€xp ((ﬁg)i—lﬁ)

h; (EXP ((ﬁg)i_uz) . 1) ’ (21)

BI® = (T3 + 15T5) 112 BR)ir 2

1
hi1 (exp ((ﬂrof)iﬂ/z) = 1) |

The derived scheme (19)—(22) is unconditionally monotone
which can be easily verified by applying the maximum prin-
ciple to the discrete problem. Conditions for the maximum
principle in the case similar to ours (the one that contain
first derivatives) have been first derived in [3]. By applying
those conditions

(A(B2)dny); <0, Al*>0, B{*>0,

(22)

1 1
Qf = 5 (4l 20 (@)

= +B{fl)+D,D:

we confirm unconditional monotonicity of the derived
scheme.
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Spatio-temg i of ions

Drift evolution in the VFEPT structure

Sp. P of

Drift evolution in the VFEPT structure (estimating the drift time)

IV. ERROR ANALYSIS OF THE NUMERICAL
APPROXIMATION

Whether the discretised model deals with a diffusion
dominated or a convection dominated case can be judged
upon by analysing coefficient 5% (see (18)). Indeed, the case
where || (8%) || = 0 corresponds to the diffusion dominated
situation. This case can be considered in a way analogous
to that proposed in [9] to show that the scheme considered
here has the truncation error of second order. Qur empha-
sis here, however, is on the case where || (8%) || — co. We
use perturbation arguments to show that in this limiting
case the resulting scheme has the first order truncation er-
ror. First, we consider a perturbed value of 85 obtained
from (18) by replacing n, with ny + 2A and p, by pa + A,
respectively, where A is an arbitrary chosen positive large
constant such that A > N, A > [|6ng||. This value is
denoted by (8%)" and

1
(-“"%Ti? i3 ung‘rj{)g’.’.] /2 ((5Tlﬂ)i+l/’2 ¥ A)

( z):w/z =

(45 (e +28) + i3 (o + A)) 4, 5 (0141 — 03)

Spatio-temporal distribution of potential energy

Fig. 4. Potential energy evolution

Spatio-temporal distribution of potential energy

Fig. 5. Potential energy evolution

(HgTy?),'+1/2 ((Pa)i+1 = (pa)i) -

(na)i) =

(p‘gT;)Huz ({nﬂ)i+l =
((Padigrjo +28) (AT — (WATS),) +

= (#tL’T,i’)i)) . (29
Secondly, we expand ug, T, p5, Ty, 0na, Na, and @ in the
vicinity of the grid point with index i. The result, obtained
by computer algebra tools of Mathematica, was substituted
in (20)—(22) which allowed us to determine coefficients of
the difference scheme under consideration. Then, the trun-
cation error of the scheme can be evaluated by using the
following representation:

d6ng (6na)” a .
= —F7 +
ot ((5nm—i—A)2) oz °

A? 0 . A
((5% +A)2) Tl ((6+A)2) !

((pfl)i+1/2 + A) ((HST;)1+1
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Spatio-temporal distribution of excess carrier concentrations

x 10"

Fig. 6. Relaxation processes in the VFEPT structure
(Dirichlet-Neumann boundary conditions)

Spatio-temporal distribution of excess carrler concentrations

x10"

Fig. 7. Relaxation processes in the VFEPT structure (estimating

relaxation time)
1 2
O|l—=h|+0 A—zh "
(6 + A)° (6 +A)
where § = min (6n,). It is worthwhile noting that both

terms, F3 and FJ., represent drift dominated fluxes. In-
deed, Ff given by the following expression

(25)

dyp
F§ = —(u8nq +,u§pa)a +
Opa Ong
taln oy ~ Ty 3y ¥

d

(s % als 4 a @
% (""nTn ) Ng — a (lu’pr )pr_n (26)

can be obtained from (11) by excluding diffusion terms

(paT> + u?Tf) =—0n,. Flux F§ defined as

ox
(o3 (=3 a
Ffy = —(2u5 + p5)ona st +
QQ (LATS) ng — = (UST2) 6n (27)
gz VTV RATTE g T T

Spatio-temporal distribution of excess carrier concentrations

Fig. 8. Diffusion processes in the VFEPT structure

is also drift dominated, and is obtainable from (11) in a way
similar to F§*, with additional exclusions of diffusive terms

Opa One
T o el U e
dne. By analysing (25) we conclude that the difference
scheme under consideration has the first order truncation
error O(6~'h) if A = 0. In those case where A — oo the

scheme is also of the first order (for fluxes F§.), but its trun-
cation error can be represented as O (A2h/((c5 + A)z)) . Fi-

nally, note that according to (25) first order schemes may
degrade in those cases where § — 0. In the next section we
apply the scheme discussed in this section to the analysis of
VFEPT structures, concentrating on the case of A — oo.
All computational experiments reported below have been
obtained under the assumptions uy = pj = const and
Do — 0 in the domain of interest.

and replacing values n, and p, by

V. COMPUTATIONAL ANALYSIS OF CHARGE TRANSPORT
PROCESSES IN VFEPT STRUCTURES

Qur case study example is based on the analysis of charge
photoresponse in the base of a GaAs vertical field-effect
phototransistor structure. The schematic cross section of
the structure is given in Fig.1. The gate (denoted by “g”) is
2 pm long and is located in the structure at equal distance
2 pm from the source (denoted by “s”) and drain (denoted
by “d”).

Our first experiment demonstrates a “pure” drift phe-
nomenon of concentrations in the case where at both
ends of the structure Dirichlet boundary conditions are
imposed. Figures 2 and 3 show the evolution of that
drift along the structure. In this case the time of this
drift for the lum structure is estimated theoretically as
tar = (18|90 /0z|)~", and for values pg = 7000cm?*V—'s~!
and dp/0x = 10%Vem™, used in our calculation, tq, =
1.4 x 10~'2s, which is in a good agreement with numerical
results.

A more complicated situation arises where the reported
phenomena may also be supplemented by some diffusion
processes. In the remaining part, we consider the photo-
charge response in the depletion region of the structure
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(between gate and drain). In this region conductive carries
concentration is fairly low, and we assume that n, = p. = 0.
Exceeded hole concentration is assumed to be p, = peo =
lem™3. In this case we are interested in the behaviour of
exceeded electrons with concentration n, which propagate
towards drain in the x-direction, as depicted in Fig. 1.
Drain region is positively biased with 2 V' potential. This
voltage is applied to the region of 2 um, from the origin
¢ = 0 to ¢ = L. The boundary conditions for concentra-
tion me = 6ne + peo were chosen in the Dirichlet form at
z = 0 and in the Neumann form at £ = L. In particular,
results of computations reported here were obtained for the
following boundary conditions

One(z, t) = no/10'2 —pey, z=0;

o

s (one(z,t)) =0, z=L. (28)
In (28) ng is GaAs intrinsic concentration at given tempera-
ture Ty which was taken in our calculations as 320K. Photo
charge propagation was analysed with a coupled system of
equations discussed in the previous sections

ddn, 08 a ( dp

31 ¥ %F =G($,t), —a; Ra) 25713. (29)

Photogenerated carrier source was defined as G (z,t) =
Gosin (nt/ty) for ¢ € [z,z.] with z; = 0.85um, ©, =
1.15pm and for ¢ < t, = 107%. We took Gy =
1032cm~3s~1. Otherwise, for z < 21, ¢ > =z, t > ¢,
G (z,t) = 0. The flux F°® was defined by equation (11)
with mobility g = 8000 (300/To)*/® cm?V-1s1.

The system of equations (29) was solved by using the
scheme described in the previous sections. The actual
implementation of the scheme was carried out in a semi-
implicit manner

1

(A (o) omktr) =0k )
i Ti+1

(/_\." ((p)kﬂ) _ Jnﬁ'“ +

(nEH + peo) iz (0FT —of), (31)

where AP () = (pit1 — 2¢i + pi—1) is the central differ-
ence operator, and k is the iteration number. The absolute
stability of the scheme can be shown in a way similar to
that developed originally in [7]. Iterative parameters a;41 /2
were chosen as follows (e.g., [7]):

(IU'S;);‘.H/z Yi+1/2T141
- (JU';)H.Ug Yi+1/2T141 '

Qit1/2 = (32)

with Yip1/2 = 4/h] (1/hip1 + 1/hs).

In Figures 4 and 5 we present the spatio-temporal distri-
bution of the potential energy. It can be seen that after the
photogeneration process (after approximately 1. x 10~19%s)
the potential energy raises and reaches its maximal value

in the middle of the structure. Then, up to the time mo-
ment estimated approximately as 1. x 10~!?s electrons tend
to propagate from the maximal values of potential energy
to boundary, where the potential energy is lower. In this
case we clearly see that the concentrations achieve the same
value at all spatial points of the structure. After the relax-
ation processes (presented in Fig. 6 and 7), drift-diffusion
processes become essential (due to the imposed Dirichlet
boundary condition, see Fig. 8). Theoretically estimated
diffusion time of these processes tqir = L?/4D with diffu-
sion coefficient D = kpTo/qut, and L = 2pm is in a good
agreement with the results of computations.

VI. CONCLUSIONS

In this paper a model for the description of fast charge
processes in optically sensitive semiconductors was derived
and analysed numerically. For the solution of the problem
we proposed an unconditionally monotone scheme. Compu-
tational analysis of a VFEPT was carried out for different
situations and theoretical estimates of photo response (i.e.
the time needed to achieve the steady state) were compared
with the results of numerical calculations.
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