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Abstract. Bandgap opening due to strain engineering is a key architect for making graphene’s optoelec-
tronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple
waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields
on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole
bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined
effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In partic-
ular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields
with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be
observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We
also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mech-
anism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T
(the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due
to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our
analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic
devices for straintronic applications.

1 Introduction

Graphene has attracted increasing interest for the design
of optoelectronic devices because it possesses unique elec-
tronic properties due to the presence of Dirac-like energy
spectrum of the charge carriers [1–4]. Several observed
quantum phenomena such as the half integer quantum
Hall effect, non-zero Berry phase, as well as the measure-
ment of conductivity of electrons in the electronic devices
lead to novel applications in carbon based nanoelectronic
devices [1–3,5–7]. The experimental data observed by the
quantum Hall effect measurement technique suggest that
a one atom thick graphene sheet has the same proper-
ties as a two dimensional system that does not contain
any bandgap at two Dirac points [3]. In addition, the re-
searchers around the globe desire to build next generation
semiconductor devices from graphene because the experi-
mental data show that the electronic mobility of this ma-
terial is very high. In such devices, one finds an oppor-
tunity to control electronic properties of graphene-based
structures using several different techniques such as gate

a e-mail: sprabhakar@wlu.ca

controlled electric fields and magnetic fields. Further, one
can engineer the straintronic devices by controlling the
electromechanical properties via the pseudomorphic gauge
fields [8–12].

Two dimensional images of a graphene sheet taken
from high resolution transmission electron microscope or
scanning tunneling microscope show that its surface nor-
mal varies by several degrees and the out-of-plane defor-
mations reach to the nanometer scale that is considered
to be due to the presence of ripple waves in graphene
sheets [13–15]. Ripples in graphene are induced by sev-
eral different mechanisms that have been widely investi-
gated [8,11,14,16–22]. Such ripples are part of the intrinsic
properties of graphene that are expected to strongly affect
the band structures due to their coupling through pseu-
domorphic vector potential [10,12,23]. Monte-Carlo simu-
lation results show that the ripples spontaneously appear
owing to thermal fluctuations with a size distribution due
to the multiplicity of chemical bonding in carbon [24].
Recent experimental studies on graphene at several dif-
ferent annealed temperatures confirmed that the ampli-
tude of the ripple waves is enhanced with increasing tem-
perature [12]. In experiments on graphene suspended on
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substrate trenches, there appear much longer and taller
waves (close to a micron scale) directed parallel to the
applied stress. These long wrinkles can also be induced
thermally [12]. Recent experimental and theoretical find-
ings utilize small spin-orbit coupling to estimate decoher-
ence time for the prospect of transporting spin information
over long distances in graphene for spintronics applica-
tions [25–27]. In this paper we present a model that
couples the Navier equations, accounting for electrome-
chanical effects, to the electronic properties of armchair
and zigzag graphene nanoribbons. We show that the rip-
ple waves, originating from the electromechanical effects,
strongly influence the band structures of GNRs. This re-
sponse mechanism might be used for tuning the bandgaps
at the Dirac point in strained GNRs and the numerical
estimate of electromagnetic field mediated spin transition
rate in such strained GNRs can be utilized to design the
optoelectronic devices for the application in straintronics.

The paper is organized as follows: in Section 2, we
provide a theoretical description of coupling between the
electromechanical effects and the band structures of arm-
chair and zigzag GNRs. Here we show that the energy
spectrum of GNRs is highly sensitive to the ripples waves.
Numerical schemes for evaluating the influence of elec-
tromechanical effects on the band structures calculation of
GNRs via exact diagonalization technique is discussed in
Section 3. In this section, we also discuss the results on the
electromechanical effects and band structures of strained
GNRs and estimate the spin relaxation times mediated by
electromagnetic field. Finally, we summarize our results in
Section 4.

2 Theoretical model

The total elastic energy density associated with the strain
for the two dimensional graphene sheet can be written
as [18,19,28] 2Us = Ciklmεikεlm. Here Ciklm is a tensor of
rank four (the elastic modulus tensor) and εik (or εlm) is
the strain tensor. In the above, the strain tensor compo-
nents can be written as

εik =
1
2

(∂xk
ui + ∂xiuk + ∂xk

h∂xih) , (1)

where ui and h are in-plane and out-of-plane displace-
ments, respectively [8,12,18,23,29]. Hence, the strain ten-
sor components for graphene in the 2D displacement vec-
tor u(x, y) = (ux, uy) can be written as

εxx = ∂xux +
1
2

(∂xh)2 , (2)

εyy = ∂yuy +
1
2

(∂yh)2 , (3)

εxy =
1
2

(∂yux + ∂xuy) +
1
2

(∂xh) (∂yh) . (4)

The stress tensor components σik = ∂Us/∂εik for
graphene can be written as

σxx = C11εxx + C12εyy, (5)
σyy = C12εxx + C22εyy, (6)
σxy = 2C66εxy. (7)

In the continuum limit, elastic deformations of graphene
sheets under applied tensions are described by the Navier
equations ∂jσik +Fi/t = 0, where Fi are applied tensions.
Hence, the coupled Navier equations of electroelasticity
can be written as [28]:

(
C11∂

2
x + C66∂

2
y

)
ux + (C12 + C66) ∂x∂yuy

+
1
2
∂x

[
C11 (∂xh)2 + C12 (∂yh)2

]

+ C66∂y (∂xh) (∂yh) +
Fx

t
= 0, (8)

(
C66∂

2
x + C11∂

2
y

)
uy + (C12 + C66) ∂x∂yux

+
1
2
∂y

[
C12 (∂xh)2 + C22 (∂yh)2

]

+ C66∂x (∂xh) (∂yh) +
Fy

t
= 0, (9)

where t is the thickness of the single layer graphene,
Fx = τeq sin (qx) and Fy = τeq sin (qy). Here q = 2π/ι
with ι being the period length of the in-plane ripple
waves and τe is the externally applied tensile edge stress.
We assume symmetric out-of-plane ripple waves (∂xh =
kh0 cos kx, ∂yh = kh0 cos ky, where k = 2π/�, � is the pe-
riod and h0 is the height of out-of-plane ripple waves)
travel along x and y direction in the plane of two di-
mensional graphene sheet [12,30,31]. Thus, we write equa-
tions (8) and (9) as:

(
C11∂

2
x + C66∂

2
y

)
ux + (C12 + C66) ∂x∂yuy

=
1
2
C11k

3h2
0 sin (2kx)

+ C66k
3h2

0 cos (kx) sin (ky) − τeq

t
sin (qx) , (10)

(
C66∂

2
x + C11∂

2
y

)
uy + (C12 + C66) ∂x∂yux

=
1
2
C22k

3h2
0 sin (2ky)

+ C66k
3h2

0 sin (kx) cos (ky) − τeq

t
sin (qy) . (11)

In this paper, we are interested to investigate the influ-
ence of ripple waves traveling along y-direction on the
band structures of elongated graphene nanoribbons in x-
direction. Thus in this case, we assume zigzag GNRs elon-
gated along x-direction with applied tensile edge stress
along y-direction that induce εyy is a non-vanishing strain
tensor component. Thus, we write equation (9) as [30]:

εyy = εs (1 + ε′s cos (qy)) , (12)

where ε′s = τe/c22tεs and

εs =
1
4
k2h2

0 +
kh2

0

4L
sin (kL) − 2τe

qc22tL
sin

(
qL

2

)
. (13)
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Now we turn to the influence of strain tensor on the elec-
tronic properties of graphene nanoribbons.

In the continuum limit, by expanding the momentum
close to theK point in the Brillouin zone, the Hamiltonian
for π electrons at the K point reads as [2,32,33]:

H = vF (τxPx + τyPy) . (14)

In equation (14), P = p−�As − eA with p = −i�∂x being
the canonical momentum operator, As = (−εyy, 0)β/a
is the vector potential induced by pseudomorphic strain
tensor [34], A = B (−y, 0) is the vector potential due to
applied magnetic field, B, along z-direction and Pauli ma-
trices τx and τy acting on sublattice or corresponds to
pseudospin degree of freedom [17,29,31,35]. We consider
that applied magnetic field does not break the time re-
versal symmetry and thus Zeeman spin energy has been
neglected. In (14), we do not consider the valley de-
gree of freedom due to the fact that the strained zigzag
graphene nanoribbon does not see the admixture of wave-
functions from different valleys [2,36]. For the armchair
graphene nanoribbon, valley degree of freedom can not be
ignored [2,37]. We may also apply tensile edge stress along
the x-direction and consider εxx as a non-vanishing strain
tensor component. However, for this specific case, we find
[H,εxx] = 0. Thus, the x-component of the strain ten-
sor does not induce any quantum confinement effects and
may not present much interest for the band engineering
applications.

For strained graphene nanoribbons with zigzag edge,
we solve Hψ = εψ, where

ψ (r) = exp (ikxx) (φA (y) φB (y))T [38].

Thus, the two coupled equations can be written as
(
kx − ∂y +

β

a
εyy +

eB

�
y

)
φB =

(
ε

�vF

)
φA, (15)

(
kx + ∂y +

β

a
εyy +

eB

�
y

)
φA =

(
ε

�vF

)
φB . (16)

Now, we can apply the operator (kx + ∂y + β
a εyy + eB

�
y)

from left on (15) and the operator (kx − ∂y + β
a εyy + eB

�
y)

from left on (16) and cast these two coupled equations (15)
and (16) in two decoupled equations for sublattices A and
B as:

(�vF )2 [−∂2
y +

(
β

a

)2

ε2yy +
(
eB

�

)2

y2

∓ βτeq

aC22t
sin (qy) ± eB

�
+ k2

x + 2
β

a
εyykx + 2

eB

�
kxy

+ 2
β

a

eB

�
εyyy]φB,A = ε2φB,A. (17)

In equation (17), we have used the identity:
[∂yεyy − εyy∂y] = −τeq sin (qy) /C22t and, [∂y, y] = 1. In
the model equation (17) for strained GNRs in presence
of external magnetic field, it is clear that the interplay
between pseudo-spin due to applied tensile edge stress,

τe, and external magnetic field, B, can influence the band
diagram of GNRs. Now, we analyze these coupled effects
(pseudo-fields and magnetic fields) on the band structures
of GNRs with several control parameters: τe (applied
stress), h0 (amplitude of out-of-plane ripple waves), L
(GNRs width) and B (external magnetic field).

3 Results and discussions

We assume that strain tensor induces a parabolic confine-
ment potential in (17) and thus we apply the vanishing
boundary conditions for the wavefunctions φA and φB at
the two boundaries. Whether the vanishing boundary con-
ditions are appropriate for GNRs of widths L = 3

√
3aN

with N = 60 or not, we assume cos(qy) ≈ 1 − q2y2/2 and
expand

ε2yy = ε0
(
1 − ε′0q

2y2
)
, (18)

where ε0 = ε2s (1 + ε′s)
2 and ε′0 = ε′s/(1 + ε′s). Now we

estimate (β/a)2 ε0ε′0q
2y2 ≈ 31 � 0 (0 is a case for un-

strained graphene) for L = 3
√

3aN with N = 50 at
x = ±L/2. Such a large confinement potential due to
strain effect provides a reseasonable assumption for van-
ishing boundary conditions of the wavefunctions associ-
ated with (17). We diagonalize the Dirac Hamiltonian by
utilizing the finite element method1. For GNRs consid-
ered here, typical numbers of elements depend on grid
refinements and exceed 6500. We solve the multiphysics
problem i.e., coupling electroelasticity theory in the band
diagram of graphene, ensuring the convergence of the re-
sults. In Figure 1, we have plotted the band diagram
of strained graphene nanoribbons for electron-hole states
at τe = 100 eV/nm, h0 = 1 nm and B = 65 T and
L = 44.27 nm. The influence of strain and external mag-
netic fields can be seen clearly at the zero energy band near
the Dirac points as well as at higher energies near the band
center [36,39]. Here we see that the bands are splitted due
to externally applied magnetic fields. The interplay be-
tween pseudomagnetic fields due to non-vanishing strain
tensor and external magnetic fields provides two fold de-
generate bands at kx = 0 that is lifted for kx �= 0.

In Figure 2, we have plotted the band structures of
strained graphene nanoribbons of electron-hole states vs.
magnetic fields at Dirac point (kx = 0). Here we find that
the band splitting of GNRs can be observed at B ≈ 40 T
and the level crossing of the band can be seen at B ≈ 80 T
due to the interplay between pseudo-fields originating
from strain tensor and external magnetic fields. To un-
derstand the mechanism of level crossing of the bands, it
is important to find an analytical expression for the en-
ergy eigenvalues of sublattices A and B from equation (17).

1 Comsol Multiphysics (www.comsol.com).
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Fig. 1. Band structures of strained graphene nanoribbons of
electron-hole states for L = 3

√
3aN with N = 60. The parame-

ters are chosen as: τe = −100 eV/nm, h0 = 1 nm, L = 3
√

3aN
with N = 60, a = 0.142 nm, B = 65 T, � = 3.5L and ι = L.
The interplay between pseudo-spin (due to strain tensor) and
external magnetic fields comes into effect largely at kx �= 0.

Thus we express (17) as:
[
p2

y

2m0
+

1
2
m0ω

2
0y

2 + δ∓y

]

φB,A =
1

2m0v2
F

[ε2 ∓ eB�v2
F

−1
4

(g0μBB)2 −
(
β

a

)2

ε2s (1 + ε′s)
2 (�vF )2]φB,A,

(19)

where,

ω0 =
�

m0

[(
eB

�

)2

−
(
β

a

)2

ε2s (1 + ε′s) ε
′
sq

2

]1/2

. (20)

δ∓ =
�

2

2m0

[
2βeB
a�

(εs + εsε
′
s) ∓

βτeq
2

ac22t

]
. (21)

Energy spectrum of (19) can be written as:

ε2n = 2m0v
2
F

[(
n+

1
2

)
�ω0 + ε(2)n

]
± eB

�
(�vF )2

+
1
4

(g0μBB)2 +
(
β

a

)2

ε2s (1 + ε′s)
2 (�vF )2 , (22)

where ε(2)n is the second order energy correction due to δ∓y
in (19). For example, first order energy correction term of
ground state energy eigenvalues of sublattices B and A
can be written as:

ε
(2)
0 = − |δ∓|2

2m0ω2
0

, (23)

Fig. 2. Band structures of strained graphene nanoribbons of
electron-hole states vs. magnetic fields at Dirac point (kx = 0).
The band splitting can be seen at B ≈ 40 T and the band
crossing can be seen at B ≈ 80 T. The parameters are chosen
to be the same as Figure 1.

where ± sign corresponds to the energy eigenvalues associ-
ated to the wavefunctions, φB and φA. This confirms that
the difference in energy eigenvalues between sublattices B
and A is enhanced by considering the combined effect of
strain and applied magnetic field that gives an indication
of electron and hole bands splitting. From equation (22),
it is also clear that ground state energy eigenvalues of
sublattice B are increased with magnetic field while first
excited state energy eigenvalues of sublattice A are de-
creased with magnetic field. Thus, a level crossing point is
expected at appropriate values of applied magnetic field
in strained GNRs which is reflected in the numerical sim-
ulation results in Figure 2. Such band splitting of sub-
lattices A and B of GNRs can be recognized as pseudo-
Landau levels. Indeed, if the applied strain is weak or if
we are considering unstrained graphene nanoribbons then
one can not observe such conduction and valence band
splitting which is clearly seen in the inset plot of Fig-
ure 2. The localized states of the pseudo-Landau levels
are terminated to the edge of the zigzag GNRs due to the
fact that the strain tensor acts like a displaced parabolic
potential that transports the localized states to the edge
and can be understood in terms of pseudo-Landau edge
states [40,41]. In other words, distribution and polarity of
pseudomagnetic field throughout the graphene nanorib-
bon can be found as: Bs = ∇ × As= B0 cos (qy), where
B0 = −2π�βτeq/ec22ta is the strength of the PMF due
to ripple waves. By choosing the parameters listed in Fig-
ure 2, we estimate B0 ≈ 2600 T (twice as large as in
reference [42] but resembles to the value obtained in ref-
erence [43]) as the strength of PMF. Such large PMF
value is experimentally feasible in graphene and widely
investigated [30,34,43]. Hence such a large PMF originat-
ing from ripple waves induces a persistent current that is
transported from the center to the edge of the graphene
nanoribbon. As a result, the electron-hole states wave-
function drifts towards and over the edge of graphene
sheet and provides edge states pseudomagnetic Landau
levels [40,41]. To analyze how much external magnetic field
alone has contributed on the bands of GNRs at Dirac K
point, we consider εyy = 0 and write (22) as:

ε2n = 2m0v
2
F

(
n+

1
2

)
�ω0 ±m0�ω0v

2
F +

1
4

(g0μBB)2 ,

(24)
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Fig. 3. Band structures of strained graphene nanoribbons of
electron-hole states vs. externally applied tensile edge stress at
Dirac point (kx = 0). The band splitting can be seen between
τe ≈ −55 eV/nm and –150 eV/nm. For τe < −55 eV/nm,
we do not find any band splitting. For τe > −150 eV/nm, we
find all bands located at the zigzag edge. The parameters are
chosen to be the same as Figure 1.

where ω0 = eB/m0. We have plotted several energy bands
vs. magnetic fields in inset plot of Figure 2 for unstrained
GNRs. It can be seen that the parabolic confinement po-
tential induced by external applied magnetic fields induce
zero modes that provide us the flat band in the bandstruc-
ture of GNRs. From this inset plot, it is clear that band
crossing with magnetic field alone in unstrained GNRs is
not possible. This motivates us to manipulate graphene
spins in Figure 2 with magnetic fields in presence of in-
plane and out-of-plane ripple waves for straintronic and
spintronic applications.

In Figure 3, we have plotted the energy bands vs. ap-
plied tensile edge stress in presence of externally applied
magnetic field at B = 65 T. For τe < −75 eV/nm, the en-
ergy bands induced by the external magnetic field is much
stronger than the pseudomagnetic field and thus one can
not find the splitting of the bands. The strength of the
pseudomagnetic field is characterized by Bs = ∇ × As =
B0 sin(qy), where B0 = 2π�βτeq/aC22t and the pseudo-
vector potential As = −β(εyy, 0)/a. For τe > −75 eV/nm,
the interplay between pseudomagnetic fields and external
magnetic fields comes into effect and thus, combining these
two fields in the graphene’s Hamiltonian, induces split-
ting of GNRs bands. At large externally applied tensile
edge stress, τe > −150 eV/nm, pseudomagnetic potential
acts like a displaced double parabolic potential that in-
duces confined localized edge states which exist near the
edge of zigzag GNRs (see Fig. 3c). The dotted lines in
Figure 3c shows the probability distribution of electron

Fig. 4. Band structures of strained graphene nanoribbons of
electron-hole states vs. amplitude of out-of-plane displacement
vector at Dirac point (kx = 0). The spin splitted bands collapse
to a single band at h0 = 10 nm. The parameters are chosen to
be the same as Figure 1.

wavefunctions of the sublattice B. Similar prediction of
the localization of electron-hole wavefunctions near the
zigzag edge was shown in Figure 2d of reference [38] by
utilizing tight binding approximation. The interplay be-
tween the states formed at the center of the ribbon due to
magnetic confinement potential and the edge states due
to strain tensor induces the level crossing of the graphene
bands at τe > −150 eV/nm. In Figure 4, we have plotted
the energy bands vs. amplitude of the out-of-plane rip-
ple waves at τe = −100 eV/nm and B = 65 T. Here we
again see that the interplay between pseudo-potential due
to out-of-plane ripple waves and magnetic field induces
level crossing of the bands at h = 10 nm.

In Figure 5, we have plotted spin-splitting energy dif-
ference vs. magnetic fields by varying externally applied
tensile edge stress at h0 = 1nm. In Figure 5a, we see
that the level crossing point due to the interplay be-
tween pseudomagnetic fields originating from electrome-
chanical effects and externally applied magnetic fields
along z-direction can be observed at B = 37 T for
τe = −30 eV/nm. In Figures 5a and 5b, we also find that
the tuning of level crossing point extends to larger mag-
netic fields with increasing values of applied tensile edge
stress. From Figures 5a and 5b, it is clear that the level
crossing point with magnetic field is inversely proportional
to the graphene nanoribbon widths. For τe = −30 eV/nm,
we find the level crossing point at B = −37 T in Fig-
ure 5a for GNRs width, L = 3

√
3aN with N = 50 and

B = 25 T in Figure 5b for GNRs width, L = 3
√

3aN with
N = 70. Thus, we can conclude that the tuning of the
level crossing point extends to larger magnetic fields with
decreasing graphene nanoribbon widths which is reflected
in Figures 5a and 5b.

We now turn to the calculations of the transition
rate between the two energy levels due to sponta-
neous emission of photons. In presence of electromag-
netic field radiation, we replace momentum operator P
by P = p− �As − eA− eAem (r, t), where Aem (r, t) is the
additional vector potential induced by electromagnetic
field radiation and write the total Hamiltonian of graphene
as H̃ = H +HA, where HA is the additional contribution
in the Hamiltonian of graphene due to the electromagnetic
field radiation of photons that can be written as

HA = −evF (A−τ+ +A+τ−) , (25)

http://www.epj.org
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Fig. 5. Spin splitting energy difference ((left) L = 3
√

3aN with N = 50 and (right) L = 3
√

3aN with N = 70) vs. magnetic
field at Dirac point (kx = 0). Level crossing is clearly seen due to interplay between pseudomagnetic fields characterized by τe

and magnetic field, B. The parameters are chosen to be the same as Figure 1.

where τ± = (τx ± iτy) /2 and A± = Ax±iAy. Here Ax and
Ay are the components of the vector potential Aem (r, t)
of the electromagnetic field radiation of photons that can
be written as

Aem(r, t) =
∑

q,λ

√
�

2εrωqV
êqλbq,λe

i(q·r−ωqt) +H.c., (26)

where ωq = c|q|, bq,λ annihilate photons with wave vec-
tor q, c is the velocity of light, V is the volume and
εr is the dielectric constant of the graphene nanorib-
bon. The polarization directions êqλ with λ = 1, 2 are
chosen as two perpendicular induced photon modes in
the graphene nanoribbon. The polarization directions of
the induced photons are êq1 = (sinφ,− cosφ, 0) and
êq2 = (cos θ cosφ, cos θ sinφ,− sin θ) because we express
q = q (sin θ cosφ, sin θ sinφ, cos θ). The above polarization
vectors satisfy the relations êq1 = êq2×q̂, êq2 = q̂×êq1 and
q̂ = êq1 × êq2. Based on the Fermi Golden Rule, the elec-
tromagnetic field mediated transition rate (i.e., the transi-
tion probability per unit time) in the graphene nanoribbon
is given by [44]

1
T1

=
V

(2π)2 �

∫
d3q

∑

λ=1,2

|Mq,λ|2δ (�ωq − εf + εi) , (27)

where Mq,λ = 〈ψi|HA|ψf 〉. Here |ψi〉 and |ψf 〉 are the
initial and final states wavefunctions. By adopting the
dipole approximation, i.e. the transition is caused only
by leading terms from A (r, t), we investigate the influ-
ence of interplay between externally applied magnetic field
and pseudomagnetic field due to ripples waves on the elec-
tromagnetic field mediated spin relaxation mechanism of
graphene nanoribbons in Figure 6. In Figure 6a, we have
plotted the transition rate between several energy eigen-
values (see the schematic diagram in the inset plot and
the real band diagram in Fig. 2) vs. externally applied
magnetic field. Here we find that at large magnetic field,
B ≈ 65 T, the level crossing due to admixture of spin and

Fig. 6. Spin transition rate vs. magnetic fields (left) and am-
plitude of out-of-plane ripple waves. Here we chose h0 = 1 nm
(left) and B = 65 T (right). The parameters are chosen to be
the same as Figure 1.

orbital states greatly enhances the spin-relaxation rate.
Hence, the relaxation rate can approach to the orbital re-
laxation rate due to the level crossing of orbital and spin
states. One may estimate the decoherence time T2 ≈ 2T1

and can predict that the decoherence time is much smaller
due to admixture of spin and orbital states at the level
crossing point that can be considered as a spin hot spot.

http://www.epj.org
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Such spin hot spot possesses very small spin life time and
may not be considered as an ideal location for the design
of graphene nanoribbon based optoelectronic, spintronic,
and straintronic devices for applications such as quantum
information processing. Thus one may utilize the external
magnetic fields (40 T ∼ 60 T is the best operating regime
in Fig. 2) smaller than those values of the magnetic fields
that induce spin hot spots (≈80 T in Fig. 2) where the
strength of pseudomagnetic fields reaches up to ≈2000 T
(twice as large as those values reported in Ref. [42]). One
can reduce the best operating regime of external mag-
netic fields up to a few tesla by designing strain tensor in
GNRs that induces smaller pseudomagnetic fields [27,34].
The level crossing of the triplet orbital states (for energy
eigenvalues, see Fig. 2) provides the spin relaxation be-
tween singlet (|φ(0)

B ↓ > ) and triplet states (|φ(1)
B ↑ > that is

shown in Figure 6a (green) between B = 65 T and 85 T. In
Figure 6b, we have plotted the transition rate between sev-
eral energy eigenvalues (see the band diagram in Fig. 2) vs.
the amplitude of the out-of-plane ripple waves, h0, where
we keep other parameters (such as applied stress, τe, mag-
netic field and in-plane ripple waves) fixed. Here, when we
increase the amplitude of out-of-plane ripple waves, h0,
and keep applied stress, τe, fixed, we find that the inter-
play between pseudomagnetic fields due to in-plane and
out-of-plane ripple waves and external magnetic fields in-
duces the decreasing values of spin-splitting energy that
eventually vanishes at approximately h0 = 10 nm. Thus,
due to the principle of conservation of energy, vanishing
spin-splitting energy induces negligible photon density of
states that provide vanishing spin-flip rates at larger val-
ues of the amplitude of the out-of-plane ripple waves.

4 Conclusion

Based on analytical and finite element numerical results,
from Figures 1–5, we have analyzed the interplay between
the pseudomagnetic fields due to in-plane and out-of-plane
ripple waves and externally applied magnetic fields on the
band structures of graphene nanoribbons. Here we have
shown that the manipulation of spin splitting of graphene
electrons (where the level crossing can be observed) is pos-
sible by coupling two combined effects: pseudomagnetic
fields (originating from ripple waves) and external mag-
netic fields. In Figure 6, we have shown that the spin
relaxation rate is greatly enhanced at the level crossing
point (at approximately B = 65 T) due to admixture of
spin and orbital states. Thus, at the level crossing point,
the mixing of spin and orbital states reduces the spin life
time. Hence such a point can not be considered an ideal
location for the design of graphene nanoribbon based op-
toelectronic, spintronic, straintronic devices for such ap-
plications as quantum information processing. As a result,
by understanding the intrinsic features of the ripple waves,
one might need to avoid applying the exact magnitude of
external magnetic field that mixes the orbital and spin
states in graphene nanoribbons for designing straintronic
devices. Thus, understanding the influence of ripple waves

and magnetic fields on the band structures of graphene
might be useful for tuning the bandgaps and level cross-
ing of singlet-triplet states in strained GNRs.
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